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Introduction and Motivation 
When developing a domain model, it seems natural to bring 
the traditional informal tools of inspection and verification, 
debuggers and automated test suites, to bear upon the prob- 
lems that will inevitably arise. Debuggers that allow inspec- 
tion of registers and memory and stepwise execution have 
been a staple of software development of all sorts from the 
very beginning. Automated testing has repeatedly proven its 
considerable worth, to the extent that an entire design philos- 
ophy (Test Driven Development) has been developed around 
the writing of tests. 

Unfortunately, while not entirely without their uses, the 
limitations of these tools and the nature of the complexity 
of models and the underlying planning systems make the 
diagnosis of certain classes of problems and the verification 
of their solutions difficult or impossible. 

Debuggers provide a good local view of executing code, 
allowing a fine-grained look at algorithms and data. Thls 
view is, however, usually only at the level of the cur- 
rent scope in the implementation language, and the data- 
inspection capabilities of most debuggers usually consist of 
on-line print statements. More modem graphical debuggers 
offer a sort of tree view of data structures, but even this 
is too low-level and is often inappropriate for the kinds of 
structures created by planning systems. For instance, god 
or constraint networks are at best awkward when visualized 
as trees. Any any non-structural link between data struc- 
tures, as through a lookup table, isn’t captured at all. Fur- 
ther, while debuggers have powerful breakpointing facilities 
that are suitable for finding specific algorithmic errors, they 
have little use in the diagnosis of modeling errors. 

Automated testing can take several forms, few of them 
convenient. Writing tests explicitly in code can require deep 
knowledge of the system in which the model is going to be 
executed, are therefore not portable to other planning sys- 
tems, even closely related ones, and will break with changes 
in the underlying system or the model, adding to the required 
maintenance work. Tests written at this level will also have 
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to be much more verbose than those written at a higher level 
of abstraction. 

EUROPA(Frank & 36nsson 2003), the predecessor to 
EUROPA2, as part of its test suite, captured the output of 
the final plan and compared it against a known-good output. 
This proved to be quite brittle, since changes to the plan- 
ner, plan database, model, or heuristics could dramatically 
alter the output without implying a bug, and hand-verifying 
output for the new known-good was both tedious and labor 
intensive. The known-good method also suffers from a lim- 
itation of scope-it looks only at the output, and in the case 
of planning and model rule execution, the path to the final 
plan is at least as important. 

Another verification technique that EUROPA employed 
was an examination of the final constraint network to ensure 
compliance with the rules of the model. While suffering 
from the output-scope problem, it also only detects errors in 
the code that executes model rules which, while significant, 
is only one of a plurality of components. This technique 
also only checks the constraint network’s compliance with 
the model, not the executed model’s compliance with the 
intended model. -. 

Clez!y, there is B gzp betweer! what traditional roo!s can 
provide and what is necessary to debug and test planning 
systems efficiently. To this end, we have built two tools: 
PlanWorks, a visualization and query tool for plan inspec- 
tion and Aver, a language for the specification of automated 
tests. 

This paper is organized as follows. We first describe some 
fundamentals of the EUROPA2 constraint-based planning 
system. We then describe our debugging tool, PlanWorks. 
We cover in light detail its views and query tools. We then 
describe our test specification language, Aver. We describe 
its method of asserting properties of plans with queries and 
boolean comparisons. We then describe the use of these 
tools to verify the description of a sample problem domain 
and instance, the pipesworld, in which we cover test com- 
position, a test failure, its investigation with PlanWorks, and 
confirmation of the fix with both PlanWorks and the auto- 
mated test. Finally, we discuss future work for both tools. 

The EUROPA2 Paradigm 
The context in which these tools have been developed is 
EUROPA2, which provides plan database services that en- 



able the integration of automated planning into a wide vari- 
ety of applications. 

A detailed discussion of the EUROPA2 paradigm is be- 
yond the scope of this paper, but a brief discussion is in- 
cluded here. A plan is a complete enumeration of the states 
necessary to achieve a set of goal states from a set of initiai 
states which satisfies the constraints of a planning domain 
and problem instance. In EUROPA2, states are represented 
as predicates, each of which has a name, start time, end time, 
duration, and zero or more parameters. Each instance of a 
predicate in a plan is represented by a token and the param- 
eters, timepoints, and duration of the predicate are repre- 
sented by variables. Predicates are associated with classes 
that represent types of objects, with specializations like time- 
lines, which require that their sequences of states be totally 
ordered, or resources, which allow concurrent states, but re- 
quire that rules about consumption and production rates and 
resource levels be obeyed. During planning each token is 
assigned to an object. Domain rules are assertions that if 
a predicate P is in the plan, then other predicates Qi must 
also be in a plan and are related to P by constraints among 
the variables of the predicates. Domain rules may also assert 
that resources are impacted by predicates; resource impacts 
are called transactions and also have variables that represent 
them. 

It is important to emphasize that EUROPAz does not 
implement any planning algorithm; rather, it provides ser- 
vices that support different planning algorithms according 
to the application, like maintaining plan state and evaluat- 
ing plan consistency. The EUROPA2 plan database main- 
tains the current plan state and an external planner performs 
the search by resolving flaws through variable restrictions, 
which amount to operations on the plan database. As such, 
it can be used to support progression planners, regression 
planners, sequential or causal link planners, and so on. To 
enable this generality, EUROPA2 distinguishes between free 
tokens (consequences of rules that haven’t been inserted into 
plans), active tokens, and merged tokens. Pianners can insert 
free tokens into plans, making them active, or co-designate 
free tokens with active tokens, making them merged. 

PlanWorks 
Introduction 
PlanWorks is a browse-based system for debugging 
constraint-based planning and scheduling systems. It as- 
sumes a strong transaction model of the entire planning pro- 
cess, including adding and removing parts of the constraint 
network, variable assignment, and constraint propagation. A 
planner logs transactions and plan states for importation into 
a relational database that is tailored to support queries for 
a variety of components. Visualization components consist 
of specialized views to display different forms of data (e.g. 
constraints, activities, resources, and causal links). Each 
view allows user customization in order to display only the 
most relevant information. hter-view navigation features al- 
low users to rapidly exchange views to examine the trace of 
the process from different perspectives. Transaction query 
mechanisms allow users access to the logged transactions to 

visualize activities across the entire planning process. 
Planworks is implemented in Java and employs a MySQL 

relational database back-end. It can be used either online 
while planning is performed or offline after capturing the 
entire planning process. Furthermore, Planworks is an open 
system allowing for extensions to the transaction model to 
capture new planner algorithms, dfferent classes of entity, 
or novel heuristics. While Planworks was specifically devel- 
oped for EUROPA2, the underlying principles behind Plan- 
Works make it useful for many constraint-based planning 
systems. 

Views 
The first view the user is presented with is an overview of 
the entire planning sequence, an inverted histogram of the 
counts of the tokens, variables, and constraints in the plan 
at each step. Moving the mouse over a histogram element 
will reveal the the number of elements of a particular type 
at that step. At a glance, the user sees how the plan’s size 
evolved throughout planning and can see patters (such as 
thrashing in a chronological backtracking algorithm, or local 
optimum in a local search planner). An indicator above each 
histogram bar indicates whether the data for that step is in 
the file system or in the Planworks database. 

The Timeline View is designed to show the sequence of 
predicates on a timeline. Since tokens can be co-designated, 
the Timeline View shows the number of co-designated to- 
kens that each token supports. 

Because the EUROPA2 structure can be treated as a di- 
rected graph (Objects+Tokens--+Variables*Constraints), 
it is useful to visualize the entire graph or certain subgraphs. 
Of particular interest are the causal tree, or token network, 
and the constraint network. All Planworks graph views use 
an incremental expansion method for navigation. Clicking 
on a node will expand all of its arcs and place in the view 
any connected nodes not already visible. Clicking on such 
an “open” node closes it, and will cause any entities to which 
it is related that are not connected to other open entities to 
be removed from the view. To assist navigation, the graph 
views provide “find by key” and “find path” to locate a par- 
ticular entity in the graph and find a path between two enti- 
ties, respectively. 

The Token Network View visualizes the causal chain re- 
sulting from planner decisions and model rules. Initially 
only the root tokens-those created in the initial state-are 
visible. Expanding a token node causes the appearance of 
rule nodes, which represent the model rules that executed 
because of the presence of the parent token in the plan. Rule 
nodes can be expanded to see the text of the rule as writ- 
ten in the model as well as to see the tokens created through 
application of the rule. 

The Constraint Network View begins with model invari- 
ants, objects, tokens, and instances of rule execution. Each 
of these entities is associated with a set of variables, which 
in turn are in the scope of constraints. “Opening” a starting 
entity will reveal its variables, each of which will reveal its 
constraints when opened. 

The Navigator View is the union of the Token Network 
and Constraint Network views as well as information not 
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explicit in any other view. Beginning from an entity present 
in some other view and every immediate neighbor entity, the 
Navigator view allows incremental exploration of every en- 
tity connection present in the plan. 

The amount of information in a plan quickly exceeds that 
which can be easily treated by these views, so PlanWorks 
offers a Content Filter to restrict the visual elements to those 
related to particular predicates, the predicates of particular 
objects, or predicates within a specified window of time. 

Transactions 
EUROPA2 has a rich transaction set describing the vari- 
ous transformations within the plan database, constraint net- 
work, and rules engine that it uses for internal notification, 
but which also has value in debugging. Planworks offers a 
mechanism for querying the transactions on individual en- 
tites, of a particular type, that represent the state transforma- 
tion from one step to the next, or a combination of these. 

Planner Control 
Planning can be quite expensive in terms of time and log- 
ging data after every planner decision only slows the process 
down, which can be counterproductive when one is attempt- 
ing to determine the existence of a bug, trace its cause, or 
verify a fix. In order to alleviate this, Planworks has the 
ability to execute the planner on-line, breakpoint, and write 
only specified steps. 

This planner control mechanism is achieved through the 
EUROPA2 notion of a model as a compiled shared library. 
From within Planworks, the model, planner, and initial state 
Are initialized and the user is presented with a control panel 
offering the ability to execute the next step and write, ex- 
ecute and write the next n steps, execute the next n steps 
without writing, execute to the end and write the final plan, 
or terminate the current run. Execution causes dynamic up- 
dates of the Sequence Steps View, ensuring that the user has 
an up-to-date view of what the planner is doing. 

Beyond this, because models in EUROPA;! are shared ob- 
jects and initial states are files loaded at planner execution 
time, both can be swapped for different models-or states 
without re-starting Planworks. 

Aver 
Introduction 
“Aver” is a language for speclfying run-time tests to ver- 
ify proper behavior of a planning system, from the plan 
database to the model to the planner. It allows the descrip- 
tion of partial or complete plans and events that occur during 
planning that constitute correct behavior. Files containing 
tests in Aver are converted to XML, which is then compiled 
to an internal byte-code and executed at planner run-time. 

Aver is used to define tests over a sequence of steps, each 
corresponding to a partial plan logged by a planner during 
search. This assumption is very generic, as the planner can 
use any form of search from backtracking to local search. 
Furthermore, the planner can log plans periodically, e.g. ev- 
ery 5th decision the planner makes. 

Test(’BasicAssertionExample‘, 
//should be true at the beginning 
At first step : 1 == 1; 

//should be true at the end as well 
At last step : 1 == 1; 

//doomed to fail after the third step 
At each step > 3 : 0 ! =  0; 

//only needs to be true once 
At any step in E O  31 : 

Count({l 2 3 4)) == 4; 
//must be true at steps 3, 5, 7, and 9 

) ;  
At step in { 3  5 7 9 }  : 1 == 1; 

Figure 1: Basic assertions in Aver. The first two assertions 
show the use of “first” and “last” in specifying steps. The 
third assertion specifies a subset of steps. The last two as- 
sertions show the differences between the “each” and “any” 
semantics. 

Tests and Assertions 
The largest unit of Aver is the test. Tests are named to allow 
for selective execution and contain sets of tests or assertions. 
An assertion consists of a specification of the set of steps at 
which the assertion must hold followed by a boolean asser- 
tion about the plan state. 

A step specijication consists of a specification of a sub- 
set of the sequence of steps, with an additional predicate 
of “any” or “each”. An assertion with the “each” predi- 
cate must be true at all steps matching the step specification 
for the assertion to be considered true, assertions with the 
“any” predicate must be true for at least one step matching 
the specification. “Each” semantics is assumed if the pred- 
icate is omitted. Aver also has two special step identifiers, 
“first” and “last”, to refer to those steps logically rather than 
numerically. 

The boolean part of an assertion is a combination of 
queries for plan entites, built-in function calls, value spec- 
ifications, and comparisons. All values in Aver are repre- 
sented as domains; sets of values represented as either enu- 
merations (i.e. ‘‘(1 2 3 4)”) or intervals (i.e. “[1 41’’ or 
“[2.5 2.91”). Domains that contain only one value or whose 
upper and lower bounds are equal are called singleton do- 
mains. This is done because, most often, values specified in 
Aver are compared with the values of EUROPA2 variables, 
whch are themselves domains. Figure 1 offers some trivial 
example assertions. 

Queries and Functions 
Aver provides direct queries for three types of EUROPA2 
plan entities: objects, tokens, and transactions. These 
queries allow for the definition of subsets of entities in the 
partial plans matching the step specification through the 
specification of relevant properties of the entity type. The 
“Objects” query can be restricted by the object name or the 
values of object variables. The “Tokens” query can be re- 
stricted by the predicate name or the values of the temporal 
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T e  s t ( ‘ Another Ex amp 1 e ‘ , 
/ / t h e r e  shou ld  be  t o k e n s  i n  t h e  p l a n  

/ / n o  b a c k t r a c k i n g  i n  t h i s  p l a n  

Count ( T r a n s a c t i o n s  ( t y p e  == 

/ / a  r o v e r  c a n ’ t  exceed t h e  speed of 
/ / l i g h t  a f t e r  t h e  1 0 t h  step 
A t  s t e p  > 1 0 :  Property(’m-maxSpeed’, 

O b j e c t s  (name == 

A t  l a s t  s t e p  : C o u n t ( T o k e n s 0 )  > 0 ;  

A t  e ach  s t e p  : 

’RETRACTION’ ) ) == 0; 

‘ S p i r i t R o v e r ‘  ) ) 
< 300000000; 

/ / t h e r e  i s  o n l y  one l o c a t i o n  t h e  r o v e r  
/ / c a n  be a t  i n i t i a l l y  

A t  f i r s t  s t e p  : 
Count ( P r o p e r t y  (’m-location’ , 

Tokens ( p r e d i c a t e  == ‘Rover.  a t ‘  
o b j e c t  == ’ S p i r i t R o v e r ’  
s t a r t  == 0))) 

== 1; 
) ;  

Figure 2: Some more complex assertions. The first assertion 
uses the “Count” function and a query on the set of Trans- 
actions to ensure that no backtracking occurred during plan- 
ning. The second assertion uses the “Property” function and 
a query on the set of Objects to ensure that a property holds. 
The last assertion demonstrates a query on the set of Tokens 
to check a property of the initial state. 

or parameter variables. The “Transactions” query can be re- 
stricted by the exact name of the transaction, the type of the 
transaction, or the object transacted upon. 

Aver has three built-in functions: “Count”, “Entity”, and 
“Property”. “Count” returns the number of entities in its do- 
main argument. “Entity” returns the nth entity in its domain 
argument, and “Property” returns the domain of the named 
variable of its single entity argument. The semantics of “En- 
tity” are defined only for finite ordered domains, and the se- 
mantics of “Property” are only defined for single entities. 
Figure 2 has some more complex examples of assertions us- 
ing queries and functions. 

All boolean operators in Aver are defined at the level 
of domains, so Aver supports the usual equality, less than, 
greater than, less than or equal, and greater than or equal 
comparison operators as well as set subset-of, intersection, 
and exclusion operators. 

A rough analogy can be drawn between Aver assertions 
and the as s e r t  ( ) facility available in many programming 
languages. The common assert ( ) marks a condition that 
must be true at a location determined by its position in code, 
and an Aver assertion marks a condition that must be true at 
a location determined by its step specification. Also, both 
indicate upon failure a problem that needs to be examined 
with a second tool; with asser t  ( ) , this is a debugger, with 
Aver, Planworks. 

Application 
To demonstrate these tools, we present a model of the 
“pipesworld” domain, described in detail in (Milidiu, 
dos Santos Liproace, & de Lucena 2003), developed for 
EuROPA2 in the modeling language developed for it, 
NDDL (New Domain Description Language). 

Pipesworld is a domain describing the behavior of the sys- 
tems used to store and transport petroleum derivative prod- 
ucts. The peculiar constraints in this domain are: 
1. The pipes must be pressurized (full) at all times. 
2. The tanks have per-product capacities. 
3. Because of (l), and the fluid nature of the products, it is 

economical to have only specific combinations of prod- 
ucts present in a pipe simultaneously. 

Products can be shifted onto a pipe from either end, forcing 
the product present in the pipe at the opposite end into the 
tank at that end. 

The petroleum products are transported in units called 
“batches.” We chose to represent a batch as a timeline with 
predicates representing its status in a pipe or tank or being 
shifted from a tank to a pipe, or vice-versa with parameters 
for the tank or pipe. 

We chose to model only so-called “unitary” pipes-pipes 
that contain only one batch at a time-in the interest of sim- 
plicity. The model is, however, still interesting because there 
is an intermediate time between when the old batch is in 
the tank and the new batch occupies the pipe in which both 
batches are partially present in the pipe. We represent pipes 
as an extension of timelines, which offer automatic mutual 
exclusion, that are parameterized on the two tanks they con- 
nect. 

Finally, tanks are represented as objects containing collec- 
tions of EUROPA2 resources, one for each type of product, 
each of which is parameterized with the number of batches 
of the particular product that tank can hold. 

Moving a batch from a pipe to a tank creates a consiimp- 
tion transaction on the tank’s appropriate batch-capacity re- 
source at it’s end time and moving a batch from a tank to 
a pipe creates a production transaction on the tank’s batch- 
capacity resource at it’s end time. The semantics of a re- 
source in EUROPA2 ensure that capacity is never exceeded. 

In our initial state, there are three identical tanks; AI, A2, 
and AS. There are two pipes, one connecting AI and A2, 
called Sl2, and one connecting A1 and A3, called S13. There 
are also 14 batches of various products, two of which start 
in the pipes an the rest are in tanks. 

The details of the initial and goal states are fairly unin- 
teresting, but for the purposes of this discussion, we point 
out that batch 12 begins in A3 and should end in A2. Hav- 
ing constructed the model and the initial and goal states, we 
constructed the test in Aver before knowing what the final 
plan looks like. 

The most trivial aspects of the Aver test confirm that the 
initial and goal states of the test are present in the final plan. 
To compose the rest of the test, we had to consider the model 
in conjunction with the initial and goal states. While it 
isn’t currently possible to test the direct application of model 



At last step : 
Count (Tokens (predicate=‘Batch. inpipe’ 

object = ‘B12‘ 
variable (name = ’rn-pipe’ 

start > 
value= ’S13’ ) 

Property ( ’  end’ I 
Tokens(predicate=’Batch.inTank‘ 

start = 0 object = ’B12’ 
variable (name = ’m-tank’ 

value = ’ A 3 ‘ )  ) ) ) )  
> 0; 

Figure 3: A rule-checking assertion. 

rules, it is possible to make assertions about their necessary 
effects, and it is this type of assertion that composes the ma- 
jority of the test suite. For example, the assertion in Figure 3 
checks the property that batch 12 must be in pipe ,913 some- 
time after it’s in tank AS, which it must necessarily be to end 
in tank A2. 

We mention this assertion in particular because it was the 
first to fail. Inspection in Planworks confirms this. A look at 
the Timeline View shows that batch B 12 is shifted from tank 
A3 to pipe S12, a clear violation of the intended semantics 
of the model. Images from the Constraint Network View 
are shown in Figure 4 to make the parameter values more 
visible. This indicates a missing constraint. 

Looking at the model text in Figure 5, we see that there 
is, indeed, a missing constraint. 

This constraint can be achieved using NDDL‘s existential 
quantification, which selects objects based on filtering cri- 
teria. If we add the code in Figure 6 to the rule, where the 
comment about the missing constraint occurs, the test should 
pass. And, indeed, we find that it does. This is further con- 
firmed by Planworks as seen in Figure 7. 

Future Work 
Planworks 
Planworks was originally conceived of as an integrated de- 
velopment environment for building and managing projects 
with EUROPA2 and it is our intention to continue to de- 
velop features to aid in those tasks. In the near future, Plan- 
Works will be extended to handle model visualization and 
visual model building, and visualizing simple temporal net- 
works. We also will use Planworks’ plugin system to create 
planner-specific views of decision structures and heuristics. 

We believe that features like automated examination of 
the constraint network and its execution trace to determine 
nogoods and the ability to alter the plan state during plan- 
ner execution through the planner control mechanism will 
greatly add value. 

Aver 
As Aver becomes a more integral part of EUROPA2’s test 
suite, we will add features to extend it’s power. In particular, 
extending the step specification to deal with properties of 

8 _ _  @ __ 0 Planworks ( ~ ~ ~ 1 - 1 8 )  ____ Ptayylsuaitratton ofPz!ect => pipes 
File Project Planning Sequence Window Plug-in Help - - ____ ______I_ 

@ c? 3 ConstraintNetworkVtew 

- 

t3 .. 
Figure 4: Top: The inTank token. Bottom: The erroneous 
inPipe token. 

Batch::inTank { 
meets (object . shiftingToPipe stp) ; 
//should be a constraint here 
//requiring that the pipe 
//have the current tank as an endpoint 
starts(Resource.change tx) 
eq(tx.quantity, 1) ; 
if (object .rn_product == lco) I 

1 
if(object.rn_product == gasoline) { 

eq ( t x . ob j e c t I m-t an k . m-1 c o ) ; 

eq(tx.object, m-tank.rn-gasoline); 
1 
/ / .  . . 

Figure 5: An erroneous rule. 



boo1 b; 
if(b == true) { 
Pipesegment pl : { 

} 
eq(stp.m-pipe, PI) ; 

eq (pl .m-to, m-tank) ; 

} 
i f ( b  == false) { 
Pipesegment p2 : { 

1 
eq ( stp . m_pipe, p2 ) 

eq (p2 .m-from, m-tank) ; 

1 

Figure 6: Existential quantification to fix the model. 

the step beyond just its number would reduce the fragility 
of Aver tests as well as allowing for implicative assertions, 
which are much more useful when verifying models. 

We will extend the query capabilities to include struc- 
tural assertions (entities with properties X are connected to 
things with properties Y), add configurable transaction sets 
to allow querying for custom transactions, and allow queries 
based on the model types of entities. 

The assertion mechanism will be improved to allow for 
arithmetic expressions and disjunctive assertions, as well as 
optional assertions. 
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